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Abstract. Clustering ensemble has become a very popular technique in
the past few years due to its potentialities for improving the clustering
results. Roughly speaking it consists in the combination of different par-
titions of the same set of objects in order to obtain a consensus one. A
common way of defining the consensus partition is as the solution of the
median partition problem. This way, the consensus partition is defined
as the solution of a complex optimization problem. In this paper, we
study possible prunes of the search space for this optimization problem.
Particularly, we introduce a new prune that allows a dramatic reduction
of the search space. We also give a characterization of the dissimilarity
measures that can be used to take advantage of this prune and we proof
that the lattice metric fits in this family. We carry out an experimental
study comparing, under different circumstances, the size of the original
search space and the size after the proposed prune. Outstanding reduc-
tions are obtained, which can be very beneficial for the development of
clustering ensemble algorithms.

Keywords: Clustering ensemble, partition lattice, median partition, search
space reduction, dissimilarity measure.

1 Introduction

Clustering ensemble has become a popular technique to deal with data clustering
problems. When different clustering algorithms are applied to the same dataset,
different clustering results can be obtained. Instead of trying to find the best one,
the idea of combining these individual results in order to obtain a consensus has
gained an increasing interest in the last years. In practice, such a procedure could
produce high quality final clusterings.

In the past ten years, motivated by the success of the combination of su-
pervised classifiers, several clustering ensemble algorithms have been proposed
in the literature [1]. Different mathematical and computational tools have been
used for the development of clustering ensemble algorithms. For example, there
are methods based on Co-Association Matrix [2], Voting procedures [3], Genetic
Algorithms [4], Graph Theory [5], Kernel Methods [6], Information Theory [7],
Fuzzy Techniques [8], among others.

However, the consensus clustering, which is the final result of all clustering
ensemble algorithms, is not always defined in the same way. For many methods,
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the consensus partition lacks of a formal definition, it is just implicitly defined
as the objective function of the particular algorithm. This makes the theoretical
study of the consensus partition properties to be difficult. This is the case, for ex-
ample, of Relabeling and Voting [3], Graph based methods [5] and Co-association
Matrix based methods [2]. On the other hand, there are some methods that use
an explicit definition of the consensus partition concept. In this approach, the
consensus partition is defined as the solution of an optimization problem, the
problem of finding the median partition with respect to the clustering ensem-
ble. Before defining this problem, we introduce the notation that will be used
throughout this paper.

Let X = {x1,x2,...,2,} be a set of n objects and P = {P;, P,,..., P} be
a set of m partitions of X. A partition P = {C,C5,...,Cr} of X is a set of k
subsets of X (clusters) that satisfies the following properties:

(i) Ci £ 0, for alli =1,... k;

(’LZ) C; OC]' = @, for all ¢ %j,

(iii) Ui, Ci = X.

Furthermore, Px is defined as the set of all possible partitions of X, P C Py
and the consensus partition is denoted by P*, P* € Px.

Formally, given an ensemble P of m partitions, the median partition is defined
as:

m
P* = arg min ; d(P, P;) (1)

where d is a dissimilarity ! measure between partitions.

Despite the median partition has been accepted in the clustering ensemble
community, almost no studies about its theoretical properties have been done by
scientists of this area. However, theoretical studies about the median partition
problem have been carried out by the discrete mathematicians much before this
problem gained interest in the machine learning community. Nevertheless, it has
been mainly studied when it is defined by using the symmetric difference distance
(or Mirkin distance) [9]. One of the most important results is the proof that the
problem of finding the median partition with this distance is A'P-hard [10]. A
proper analysis with other (dis)similarity measures has not been done.

Despite the complexity of the problem depends on the applied (dis)similarity
measure, it seems to be a hard problem for any meaningful measure [1]. The
application of an exhaustive search for the optimum solution, would only be
computationally feasible for very small size problems. Therefore, several heuris-
tic procedures have been applied to face this problem, for example: simulated
annealing [6,11] and genetic algorithms [12].

Despite the good results with these heuristics, they are still designed for
finding the optimum solution in the whole search space. An interesting approach
is to study the properties of the problem in order to find a possible prune of the
search space, reducing the complexity. In some clustering ensemble algorithms,

! The problem can also be equally defined by maximizing the similarity with all par-
titions, in the case that d is a similarity measure.
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an intuitive simplification of the problem, called fragment clusters [13,14], has
been used. The idea is that, if a subset of objects has been placed in the same
cluster in all partitions to be combined, it is expected to find it in the consensus
partition. Therefore, a representative object (fragment object) for each of those
subsets can be computed. This way, the problem is reduced to work with the
fragment objects. Once the consensus result is obtained, each fragment object is
replaced back by the set of objects that it represents, in order to obtain the final
consensus partition. This idea has also been used in the context of ensemble of
image segmentations under the name of super-pixels [15, 16].

The above explained reduction needs objects to be placed in the same cluster
for all partitions. As the number of partitions increases or partitions are more
independent or some noisy partitions are included in the ensemble, the probabil-
ity of having such subsets of objects with the same cluster label in all partitions
decreases. Therefore, this prune of the search space could be useless in practice.
Stronger prunes of the search space are needed for real applications.

In this paper, we introduce a new prune that leads to a dramatic reduction
of the size of the search space. The paper is structured as follows, in Section 2
we present the basic concepts on lattice theory that are needed to introduce
our results. In Section 3 a relation between the dissimilarity measure used to
define the median partition problem and possible prunes of the search space is
establish. First, a formalization of the fragment objects based prune is given
by introducing the properties to be fulfilled by the dissimilarity measure. After-
wards, we introduce a new prune of the search space and provide a family of
dissimilarity measures for which this prune is possible. Moreover, we present a
measure that fits in this family, which can be used in practice to take advantage
of the reduction of the search space. In Section 4, both prunes of the search
space are experimentally evaluated on synthetic data. The size of the reduced
search spaces is compared with the size of the whole search space under different
conditions. Finally, Section 5 concludes this study.

2 Partition Lattice

The cardinality of the set of all partitions Py is given by the | X|-th Bell num-
ber [17], which can be computed by the following recursion formula B, =
ZZ:O (Z)Bk The Bell number has an exponential growing as the number of
objects increases, e.g. By = 5, Bip = 115975 and Bjgo = 4.75 x 1015 (Much
bigger than the estimation of the number of all atoms in the observable universe,
around 108%) 2. Therefore, even for a relatively small number of objects, the set
of all partitions of them Py is huge.

Over Py, a partial order relation® < (called refinement) can be defined. For
all P, P’ € Px, we say P < P’ if and only if, for all cluster C’ € P’ there are

2 http://www.universetoday.com/36302/atoms-in-the-universe/

3 A binary relation which is reflexive (P < P), anti-symmetric (P < P’ and P’ < P
implies P = P’) and transitive (P < P’ and P’ < P” implies P < P") for all
P,P',P" € Px.
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clusters Cj,, Ciy, ..., Cj, € P such that C" = (J;_, C;;. In this case, it is said
that P is finer than P’ or equivalently, P’ is coarser than P.

The set of all partitions Px of a finite set X, endowed with the refinement
order (=) is a lattice (see example in Fig. 1). Therefore, for each pair of partitions
P, P’ two binary operations are defined: meet (P A P’) which is the coarsest of
all partitions finer than both P and P’, and join (P V P’) which is the finest of
all partitions coarser than both P and P’.

For example, in Fig. 1, if P, = {{a,b,¢,d}}, P» = {{a,b},{c,d}}, P3 =
{{a,b,c},{d}}, Py» = {{a,b},{c},{d}}, then: Py < P, < P;; P, A P; = P, and
P,V Py =Py

{a, b, ¢, d}

TN

{a}{b, c, d} {bHa, ¢, d} {cHa, b, d} {dHa,b,c}  {a,bHc,d}  {a c}b,d} {a, d}{b, c}

{a}{b}{c, d} {a}{c}{b, d} {a}{d}{b, c} {a,b}{cHd}  fa,ch{b}{d}  {a,d}{b}{c}

{a}{b}{c} {d}

Fig. 1. Hasse diagram or graphical representation of the lattice associated to the set
of partitions Px of the set X = {a,b,c,d}.

Among several properties, the partition lattice (Px, <) satisfies the property
of being an atomic lattice. The partitions P,,, composed of a cluster containing
only the objects  and y, and the remaining clusters containing only one object,
are called atoms. For example, in Figure 1, P,, = {{a,b},{c},{d}} and P,. =
{{a}, {b,c},{d}} are two atoms. The partition lattice is atomic because, every
partition P is the join of the elementary partitions P, for all pair of objects
x,y which are in the same cluster in P.

An important concept that is needed to understand the results proposed in
this paper is the ¢-quota rules [18]. Given a real number ¢ € [0, 1], the g-quota
rule ¢, is defined in the following way:

cq(P) = \/{vay ty(2y, P) > ¢} (2)

where y(zy,P) = w and N(zy,P) is the number of times that the
objects z,y € X are in the same cluster in the partitions in P.
Two interesting cases of ¢-quota rules are the following:

— unanimity rule: u(P) = \/{P,, : v(zy,P) = 1}
— majority rule: m(P) = \/{Pyy : v(zy,P) > 0.5}
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Notice that any ¢-quota rule is a partition of Px. For example: u(P) is the
partition obtained by the join of all atoms F,,, such that the objects z and y
are placed in the same cluster in all partitions in P. In the same way, m(P) is
the join of all atoms P, such that  and y are in the same cluster in more than
half of the partitions in P. Next we present a toy example.

Ezample 1. Let X = {1,2,3,4,5,6} be a set of objects and P = { Py, P, P3, Py, Ps}
be a set of partitions of X, such that:

P, = {{1,2},{3,4},{5,6}}, P» = {{1,2,4},{3,5,6}}, P;s = {{1,2,3},{4,5,6}},
Py = {{17 3, 4}7 {27 5, 6}}7 Ps = {{1’ 3}’ {2’ 4}7 {57 6}}

In this case u(P) = {{1},{2},{3},{4},{5,6}} since 5 and 6 are the only
elements that are grouped in the same cluster in all partitions. On the other
hand, m(P) = {{1,2,3},{4},{5,6}} = P12V P13V Pss. Notice that objects 2 and
3 are in the same cluster in m(P) even though Ps3 is not a majority atom, i.e.
~v(23,P) = 1/5 < 0.5. This is a chaining effect of the fact that Pio and P53 are
majority atoms.

3 Methods

The two rules defined in the previous Section (unanimity and majority rules)
allow the definition of two different subsets of the partition space Px. Let us
consider Ux C Px the set of all partitions coarser than u(P), i.e. Ux = {P €
Px : w(P) < P}. Analogously, Mx C Px is defined as the set of all partitions
coarser than m(P), i.e. Mx = {P € Px : m(P) < P}. It is not difficult to verify
that Mx C Ux C Px, because any atom Py, satisfying P,, < u(P) also holds
P, <= m(P).

In this section we will describe the conditions such that the median partition
can be searched just in the reduced spaces Ux and M. The median partition
problem could have more than one solution, therefore equation (1) should be
written in a more precise way as follows:

Mp = arg Iglellipl}( Z d(P, P)) (3)
i=1

where Mp is the set of all median partitions. If we only consider the reduced
search space Ux, the median partition problem is defined as:

My = arg min ; d(P, P)) (4)

In the same way, when only My is considered as search space, the median
partition problem is given by:

= i d(P, P,
My argprgli/ﬂ(; (P, P;) (5)

Another concept that we will use is the sum-of-dissimilarities (SoD):
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Definition 1. Given a set of partitions P C Px and a dissimilarity d : Px x
Px — R, the sum-of-dissimilarities of a partition P to P (SoD(P)) is defined

as:
m

SoD(P) = d(P,P;)

i=1

Notice that a median partition P* is an element of Px with a minimum SoD
value, i.e. P* = argminpep, SoD(P).

In Section 3.1 we present a family of dissimilarity functions for which Mp =
My and therefore the reduced search space Ux can be used instead of Px. In
Section 3.2 a family of dissimilarity functions for which Mp = My is also pre-
sented. We also prove that the lattice metric belongs to this family of functions.

3.1 Prune of the search space based on Unanimity Rule

Definition 2. A dissimilarity measure between partitions d,, : Px x Px — R is
said to be u-atomic, if for every pair of partitions P, P’ € Px and every atom
P,y such that Py, £ P and Py < P', then d(P V Py, P') < d(P,P’).

Proposition 1. Let P C Px be a set of partitions and d, be an u-atomic dis-
similarity function. For all partition P € Px and every atom P, such that

Pyy £ P and Py : y(zy,P) = 1, we have:
SoD(P V Pyy) < SoD(P)

Proof. SoD(P)=d,(P,P1)+...+d,(P,Py,) for all P, € P, withi=1,...,m.
In the same way, SoD(PV Pyy) = dy(PV Ppy, P1) + ...+ du(PV Pyy, Pr,).

As y(zy,P) = 1, all partitions P; € P hold P,, < P;. For each term in both
equations we have d, (PV Py, P;) < d, (P, P;) based on the definition of u-atomic
dissimilarity and therefore SoD(P V Py,) < SoD(P). O

Proposition 2. Let P C Px be a set of partitions, u(P) be the unanimity rule
and d,, be an u-atomic function. Every median partition P* € Mp holds u(P) =
P*.

Proof. Let us assume that P* € Mp is a median partition and u(P) A P*.
Then, there is at least one atom P, < u(PP) such that Py, ﬁ P*. According to
Proposition 3, P* would not be a median element because the partition P*V Py,
would have a smaller SoD value. Therefore, the assumption is false and we
conclude that u(P) < P* O

Corollary 1. Let P C Px be a set of partitions and d,, be an atomic function,
then problems (3) and (4) have the same set of solutions (Mp = My).

Proof. This is a direct consequence of Proposition 2 and equations (3) and (4).
If all solutions of equation (3) are coarser than m(P), they are in Ux. Therefore,
problems (3) and (4) are equivalent. O
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In practice, there is a simple way to reduce the search space from Px to Ux.
First, u(P) should be computed and for each cluster a representative element
y; is defined. This way, a set of objects Y with |Y| < |X| is obtained, and the
corresponding set of partitions Py will be equivalent to Ux. This is exactly the
idea of fragment clusters. As we have previously mentioned, this idea has been
intuitively used before and have also been proven to be valid for some common
dissimilarity measures [13] such as: Mutual Information and Mirkin distance.
In this section, we have presented the notion of u-atomic function and we have
proven that for any u-atomic dissimilarity measure this prune of the search space
can be used.

3.2 Prune of the search space based on the Majority Rule

Definition 3. A dissimilarity measure between partitions d,, : Px x Px — R
is said to be m-atomic, if for every pair of partitions P,P' € Px and every
atom Py such that Ppy ﬁ P, there is a constant real value ¢ > 0 such that the
following properties hold:

— (i) if Pyy = P/, then dp(PV Py, P') < d(P,P') — c
— (ii) if Ppy £ P, then dp, (P V Py, P') < d(P, P') + ¢

Notice that following this definition any m-atomic function is also u-atomic.

Proposition 3. Let P C Px be a set of partitions and d,, be an m-atomic
function. For all partition P € Px and every atom Py, such that Py, 73 P and
Py y(zy,P) > 0.5, we have:

SoD(P V Py,) < SoD(P)

Proof. SoD(P)=dn(P,P1)+...+dn(P,Py) forall P, e P, withi=1,...,m.
In the same way, SoD(PV Pypy) = dp(PV Pyy, Pr) + ... + di (P V Py, Py).

As y(zy,P) > 0.5 there are t > m/2 partitions P; € P such that P,, < P,
and therefore according to definition 3, d,,,(P V Pyy, P;) < dp(P, P;) — c. On
the other hand, there are [ < m/2 partitions P; € P such that P,, A P; and
dp(PV Py, P') < dp(P,P") +c.

Therefore, SoD(P V P,,) < SoD(P) —t-c+1-c, and taking into account
that t > [ and ¢ > 0 we have that: SoD(PV P,,) < SoD(P) and the proposition
is proven. O

Proposition 4. LetP C Px be a set of partitions, m(P) be the majority rule and
dpm, be a m-atomic function. Every median partition P* € Mp holds m(P) < P*.

Proof. The proof is analogous to the one for Proposition 2. Let us assume that
P* € Mp is a median partition and m(P) A P*. Then, there is at least one atom
P,y = m(P) such that P,, A P*. According to Proposition 3, P* would not be a
median element because the partition P*V P, would have a smaller SoD value.
Therefore, the assumption is false and we conclude that m(P) < P* O
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Corollary 2. Let P C Px be a set of partitions and d,, be a m-atomic function,
then problems (3) and (5) have the same set of solutions (Mp = Myy).

Proof. This is a direct consequence of Proposition 4 and equations (3) and (5).
a

We have proven that if the median partition problem is defined with a m-
atomic function, any solution of the problem will be found in the reduced search
space Mx. As in the case of the fragment clusters prune, there is a simple way
to reduce the search space from Px to Mx. In this case, m(IP) should be first
computed and for each cluster a representative element y; is defined. This way,
a set of objects Y with |Y| < |X]| is obtained, and the corresponding set of
partitions Py will be equivalent to Mx.

So far, we have presented the notion of m-atomic function and we have proven
that for any m-atomic dissimilarity measure this prune of the search space can be
applied. Now, we present an existing distance between partitions and we prove
that it is m-atomic.

Definition 4. (Lattice Metric [18]) The function ¢ : Px x Px — R defined as
0(P,P") = |P|+ |P'| — 2|P V P'|, where |P| denotes the number of clusters in
partition P, is called lattice metric.

Proposition 5. The lattice metric § : Px x Px — R is m-atomic.

Proof. Let P, sz,Pzt,P’ € Px be 4 partitions such that P, and P,; are two
atoms holding P, A P, Py, = P’; and P,; £ P, P,y # P’. We have to proof
that there is a constant ¢ value such that:

(i) 6(PV Py, P") <6(P,P") —c, and (i) 6(PV Py, P') <§(P,P')+¢

Working on (i), we have:

|PV Pyy| 4 |P'|=2|PV Py VP|<|P|+|P|-2PVP|-c
as P, < P', then PV P,, V P’ = PV P'. Therefore:
|PV Ppy| < |P|—c

as Pyy A P we have [PV P,,| = |P|—1 because |PV P,,| means the join of two
clusters in |P|. Thus, we obtain
c<1

Now, working on (i):
|PV Py|+|P'|—2|PV P,V P|<|Pl+|P|-2PVP|+c
—1-2|PVP,VP|<-2IPVP|+c
c>2|PVP|-1-2|PV P,V P|

the right-hand side of the inequality takes the higher value when P,y A PV P,
and in this case |PV P, V P'| = |PV P'| — 1. Therefore,

c>2[PVP|-1-2(PVP|-1)
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c>1

Taking into account both results, we conclude that ¢§ is a m-atomic function with
c=1. a

This means that if the median partition problem is defined with the lattice
metric 6 the search space of the problem is reduced to M x. Notice that this met-
ric corresponds to the minimum path length metric in the neighboring graph of
the lattice (see Figure 1), when all edges have a weight equal to 1 [18]. There-
fore, we could say that this is an informative measure to compare partitions that
takes into account the lattice structure of the partition space. Furthermore, it
allows a pruning of the search space for the median partition problem.

4 Experimental Results and Discussion

Let X = {x1,...,7,} be a set of n objects where z; € R? is a vector in
multidimensional space. We assume that each dimension of the vector x; =
(i1, .., q) is drawn from the uniform distribution z; ; ~ U(0,1) and are mu-

tually independent. We generated synthetic datasets for d = 3 and n = 1000(=
10%), 3375(= 15%), 8000(= 20%), 15625(= 25%), 27000(= 30%). Objects in the
datasets lie inside a 3-dimensional cube starting at the origin of the cartesian
coordinates system and with edge length of 1.

In order to generate different partitions of this dataset, we use a simple clus-
tering algorithm based on cuts of the cube by random hyperplanes. Furthermore,
we model different dependency between partitions in the ensemble by clustering
the dataset taking into account different subsets of the dimensions of the objects
representation.

We carry out three different kinds of experiments to illustrate the behavior
of the proposed method for pruning the search space. In Section 4.1 we work
with different dataset sizes (n) and three different levels of dependency between
partitions. In Section 4.2, we vary the number of clusters (k) in the partitions to
be combined and finally, in Section 4.3, we carry out experiments with different
amount of partitions (m) in the cluster ensemble. For all experiments we show:

| X |: Number of objects in the dataset. |X| = n.
|Px|: Size of the original search space for the median partition problem.
|u(P)|: Number of clusters in the unanimity rule partition.
|[Ux|: Size of the search space after applying the unanimity rule based
prune (fragment clusters based prune).
|m(P)|: Number of clusters in the majority rule partition.
|[Mx|: Size of the search space after applying the majority rule based prune
(the proposed prune).

In all tables, the sizes of the search spaces are given in powers of 10. This
way, the order-of-magnitude differences among the sizes of the different search
spaces can be easily appreciated. In order to provide an uniform notation, even
the small values are given in powers of ten, e.g. if |Px| = 203 we will write 102

Results reported in all tables correspond to the median values of individual
results after 5 repetitions.
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4.1 Analysis by increasing the number of objects and varying the
independence degree

In this section we compare the sizes of |Px|, |[Ux| and |Mx/| for different dataset
sizes. We generated 10 partitions, where each partition has a number of clusters
equal to a random number in the interval [2,n/2]. In Table 1, only the first
feature dimension of the objects was used for the computation of partitions. The
idea is to generate partitions with high degree of dependency, i.e. partitions with
similar distribution of objects in the clusters. In the case of Table 2, a medium
degree of dependency is explore by using features d = 0, 1. Finally, in Table 3
all features d = 0, 1, 2 are used to analyze the behavior of the prunes in the case
of ensembles with highly independent partitions.

Table 1. Comparison of |Px|, |Ux| and |Mx| for different dataset sizes | X|. Partitions
were generated with a high degree of dependency (d = 0). We use m = 10, and for
each partition k = random(2,n/2). Results are the average of 5 trials.

|X| 1000 3375 8000 15625 27000
|PX| 101928 107981 1021465 1045847 1084822
[u(P)] 10 15 20 25 30
[Ux| 10° 10'° 10" 10" 10%
|m(P)| 6 9 10 10 14
[Mx| 10? 10* 10° 10° 10®

Table 2. Comparison of [Px|, |Ux| and |[Mx]| for different dataset sizes | X|. Partitions
were generated with a medium degree of dependency (d = 0,1). We use m = 10, and
for each partition k = random(2,n/2). Results are the average of 5 trials.

|X] 1000 3375 8000 15625 27000
|]PX| 101928 107981 1021465 1045847 1084822
[u(P)] 98 195 345 558 689
|UX| 10113 10268 10539 10963 101239
m(P 6 7 14 15 25
‘\IMEX)\‘ 10? 10° 10° 100 10'?

Table 3. Comparison of |Px|, [Ux| and [Mx| for different dataset sizes | X|. Partitions
were generated with a low degree of dependency (d = 0,1,2). We use m = 10, and for
each partition k = random(2,n/2). Results are the average of 5 trials.

|X] 1000 3375 8000 15625 27000
|]PX| 101928 107981 1021465 1045847 1084822
[u(P)] 777 2094 5877 7122 9014
1429 4589 15096 18801 24587
|Ux| 10 10 10 10 10
[m(P)] 12 35 43 50 71
[Mx| 107 10%° 10%° 10*8 107
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From this experiment we can appreciate the following:

— The cardinality of Mix is always considerable lower than the cardinality of
Ux and the cardinality of Uy is also always much lower than the cardinality
of ]PX .

— As the number of elements in the dataset increases the size of all search
spaces also increases. However, |Px | grows faster than |Ux| and at the same
time |Ux| grows faster than |Mx|.

— Increasing the independence in the partitions in the ensemble, the cardinality
of the resulting search spaces after both prunes also increases. The higher the
dependency between partitions, the higher the probability of finding groups
of objects that were placed in the same cluster in all partitions or in more
than half of the partitions.

— Despite the original search space Px is huge in all cases, the reduced search
space after the majority rule based prune My is sometimes very small. In
this case, the exact solution of the median partition problem could be even
found by following an exhaustive search. On the other hand, the reduced
search space after the unanimity rule prune Ux is, many times, too big to
be useful in practice.

4.2 Analysis increasing number of clusters in the partitions

In this section we used a dataset of size 10 x 10x 10 = 1000. The three dimensions
of each object are taken into account for the generation of the partitions in the
ensemble. We generated different ensembles of m = 10 partitions with different
number of clusters k£ = 5,20, 50,100,200. The results of this experiment are
reported in Table 4.

Table 4. Comparison of |[Px|, [Ux| and [Mx| when the number of clusters k in the
partitions is increased. Partitions were generated by using the full representation of
objects d = 1,2,3. The dataset size is 1000 and we use m = 10 with k clusters.

k 5 20 50 100 200
X 1000 1000 1000 1000 1000
‘PX| 1021465 1021465 1021465 1021465 1021465

|u(P)] 41 161 523 647 769
‘[UX| 1037 10211 10891 101149 101412
m(P 1 3 10 31 115
||M§X)|‘ 10° 10! 10° 10%° 10'3?

From Table 4 we can see that the size of the reduced search spaces increases
together with the number of clusters in the partitions to be combined. This is
expected, because the higher the number of clusters, the less the probability of
finding groups of objects that are placed in the same cluster in all partitions or
more than half of the partitions. Furthermore, when a small number of clusters
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(w.r.t the number of objects) is used, the reduction of the search space after
the majority rule based prune is too big. The median partition could have very
few clusters or even one cluster. This is a consequence of the chaining effect
illustrated in Example 1. This kind of medians could be useless in practical
applications.

4.3 Analysis increasing the number of partitions

In this section we used a dataset of size 10 x 10x 10 = 1000. The three dimensions
of each object are taken into account for the generation of the partitions in
the ensemble. We generated ensembles with different number of partitions m =
5,10, 20, 50, 100, where each partition has a number of clusters equal to a random
number in the interval [2,n/2]. The results of this experiment are reported in
Table 5.

Table 5. Comparison of |Px|, [Ux| and [Mx| when the number of partitions & in the
ensemble is increased. Partitions were generated by using the full representation of
objects d = 1,2,3. The dataset size is 1000 and we generate m partitions, each one
with k = random(2,n/2) clusters.

m 5 10 20 50 100
|X] 1000 1000 1000 1000 1000
‘PX| 1021465 1021465 1021465 1021465 1021465

|u(P)] 601 694 789 772 746
‘[UX| 101052 101249 101456 101418 101362

[m(P)] 27 14 13 6 1

[Mx| 10* 10° 10® 10? 10°

While the size of the search space after unanimity rule based prune [Ux|
remains stable, the cardinality of M x decreases as the number of partitions in
the ensemble increases. The higher the number of partitions in the ensemble,
the higher the probability of finding groups of objects that are placed in the
same cluster in more than half of the partitions. However, this reduction could
be sometimes too big such that the resulting median partition has few clusters
or just one. This could be inappropriate in practical applications.

5 Conclusions

We studied two possible reductions of the search space for the median partition
problem. In the first case, we introduced a family of functions that allow the
application of the fragment clusters based prune. This prune have been used
in an intuitive manner or with a few measures for which the suitability of this
prune has been proven. A characterization of the measures that allow this prune
is presented. Furthermore, we introduced a stronger prune of the search space
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for the median partition problem. In this case, we also presented a family of
dissimilarity measures that allow the application of this prune and we proved
that the lattice metric fits in this family.

The proposed prune is able to do a dramatic reduction of the search space.
Even for relatively big number of objects, for which the original search space
is really huge, the reduced search space is many times small enough such that
the median partition can be found by an exhaustive search. Even in the cases
when the reduced search space is still big, any heuristic procedure could take
advantage of the strong reduction with respect to the original size of the space.

Despite this prune can be beneficial in several problems, sometimes the me-
dian partition defined with a function that allows this prune, has a small number
of clusters. In some extreme cases, it could even be just one cluster, making this
kind of consensus useless. In practice, this limitation could be smoothed by gen-
erating an ensemble of partitions with a high number of clusters, which will be
reduced in the consensus partition computation. This idea has been previously
used in the clustering ensemble context [19].

The advantages of the proposed prune from the computational point of view
are clear in our experiments with synthetic data. A further step would be to
analyze the quality of the median partition obtained by this method on real
datasets.

The two studied prunes correspond to two particular cases of the g-quota
rules presented in Section 2: unanimity (¢ = 1) and majority (¢ = 0.5). The first
one leads to a commonly weak reduction of the search space, while the second
prune could be too strong sometimes. A possible good trade-off could be found
for prunes associated to other quota rules, e.g. ¢ = 2/3 or 3/4. A characterization
of the dissimilarity measures between partitions that would allow this kind of
prunes is worth to be study.
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